Multiband Agile Neo-Sensor (MANS)

Air Force Research Laboratory

Directed Energy Directorate

Sponsored in part by:

AFOSR

Beam Projection & Compensation Group

Mr. Dan Marker

Dr. Mark Gruneisen

Dr. Mike Wilkes

Lt Ethan Holt

Dr. Richard Carreras

Dr. Jim Rotge Boeing RTS

Mr. Ray Dymale Boeing RTS

Mr. Don Lubin Boeing RTS

+ others (see individual briefing)

MANS Concept

3-meter aperture multi-band passive or active imaging system utilizing ultra-lightweight optics, advanced wavefront control,

And one of the following:

- high altitude airship
- balloon
- space platform
- mobile ground based

Tropopause

Strategic Vision

Challenge I: These apertures inherently have more dynamic (in some cases) and static errors than conventional apertures

Challenge II: Overcome the FOR and rapid retargeting limitations of ultra-low-mass electro-optical systems.

Approach: Use Advanced Wavefront Control techniques to relax both static and dynamic system tolerances and develop rapidly fabricated, low-cost, ultra-lightweight, stress stabilized optical quality apertures

MANS Mission

- Space Situational Awareness (SSA)
- Boost phase tracking
- Missile launch detection
- Space shuttle inspection
- Intelligence, Surveillance, Reconnaissance (ISR)
- Border Patrol
- Forest Fire Detection and Management
- Traffic Management
- Pollution Detection
- Law Enforcement

Main Point

If you try to put a conventional lightweight 3-meter diameter agile optic on a High Altitude Airship, it will no longer be at a high altitude.

Advantages of <u>any</u> optical system mounted to the High Altitude Airship

Tangential tropopause imaging at 70kft A powerful tool for viewing missiles & satellites

(Minimal atmospheric aberrations... $r_0 \ge 50$ cm)

Missiles, space objects, and SSA

HAA vs ground based coverage

What could AFRL's 3-meter diameter MANS do on the HAA?

- Significant light gathering capability
- High resolution
- Minimal atmospheric aberrations
- Relaxed structural tolerances
- System capabilities: agile λ , bandwidth, and novel opto-mechanics

Passive imaging capabilities

Range-to-target	Res (cm)	S/N
Space shuttle (200km)	4	
Vertical (500km)	11	~60*
Tangential tropo (2000km)	44	

The five enabling Technologies

- Advanced WFC*
- Agile narrowband filters (NMSU)
- Wide Dynamic range WFS* (UAH?)
- Ultra-lightweight optics (including optical windows)*
- High Altitude Airship HAA (MDA) or others

<u>Compensated Telescope</u>: <u>10-Degree Off-Axis Aberration Compensation</u> factor-of-70 increase in FOR

programmable diffractive optic phase profile

without compensation $\sim 40\lambda$ p-p aberration

with compensation diffraction-limited performance

Pressure Augmented Membrane (PAM)

Thickness variation (rms) @ 633 nm

 $\lambda/20$ @ 10 cm dia

 $\lambda/8$ @ 28 cm dia

 $\lambda/20$ @ 90+ cm dia

Composite ring

Boundary control

Membrane mirror

Comment

- All involved technology is a reasonably new development
- The Technology Readiness Level is quite varied
 - e.g.
 - Large planar polyimide film are well developed
 - Doubly curved films less developed
 - High energy laser film structures even less
- Expect technology to become largely available by 2009
- W/O a short explanation of AWC technology the believability of an optical quality membrane telescope is difficult to accept

The five enabling Technologies

- Advanced WFC*
- Agile narrowband filters (NMSU)
- Wide Dynamic range WFS* (UAH?)
- Ultra-lightweight optics (including optical windows)*
- High Altitude Airship HAA (MDA) or others

Diffractive Wavefront Control for Multi-Wavelength Applications

Jim Rotge, Ray Dymale, and Donald Lubin

Boeing North America Inc. PO Box 5670 Albuquerque NM 87185

Mark Gruneisen and Lewis DeSandre

Air Force Research Laboratory
Directed Energy Directorate
Kirtland AFB, New Mexico 87117

This work is supported by AFOSR - Dr. Kent Miller EOARD - Dr. Alex Glass

Diffractive vs. Conventional WFC 2-dimensional dynamic operation

Conventional WFC

large-range OPD

Aberration Compensation Mechanism:

Optical Path Subtraction

OPD_{ab} $(x,y) - OPD_{deformable mirror}(x,y) = 0$

Advantage
Wavelength insensitive!!!!

Diffractive WFC

Methods

- reconfigurable modulo- λ phase gratings
- real-time holography

Aberration Compensation Mechanism

Diffractive Phase Subtraction

$$\Phi_{ab}(x,y) - \Phi_{modulator}(x,y) = (2\pi \Delta \lambda / \lambda_{ab} \lambda_{modulator}) OPD_{ab}(x,y)$$

<u>Advantages</u>

Potentially faster with low-throw requirement

More mature technology for large aberration compensation

Issues

Diffraction Efficiency
Wavelength Dependence

Hardware Approaches to High-Resolution Diffractive Phase Modulators with 100,000s of elements

- 1. Liquid-Crystal-on-Silicon Phase Modulators {~512x512 array}
 - Boulder Nonlinear Systems
 - Kent State Liquid Crystal Institute
- 2. Optically Addressable Liquid-Crystal Spatial Light Modulators
 - Institute for Laser Physics
 - Hamamatsu Photonics K.K.
 - Quinetiq
- 2. Cascaded EASLM/OASLM {~640x480 array}
 - Hamamatsu Photonics K. K.
 - Quinetiq
- 3. High-Resolution MEMS Mirrors {array sizes tbd}
 - Boston Micromachines
 - Optron Systems
 - Intellite, Inc.

1. Diffraction Efficiency

Maximum Diffraction Efficiencies for Thin Diffraction Media {Scalar Theory of Diffraction}

Important Practical Issues to Achieving High Optical Efficiency

a) Theoretical ideal

b) Discrete phase steps

c) Limited fill factor

d) Influence function

Important Issues

- 1. Accuracy of phase resets
- 2. Discrete phase steps
- 3. Fill factor
- 4. Localization of resets
- 5. Linearity of phase response

Optimization of Diffraction Efficiency

Physical Optics Model for Numerical Computation of Diffraction Efficiency

Programmable High-Resolution Phase Modulator System following Hamamatsu Photonics K.K. product

Approach: commercial EASLM / Fourier filter / customized amplitude-to-phase converter

- leverage commercial high-resolution EASLM market
- utilize Fourier filtering to optimize fill factor and influence function
- explore optical physics and system capabilities of diffractive wavefront compensation

Modeled Diffraction Efficiency for MEMS Mirror Justin Mansell, Intellite, Inc.

Phase Dynamic Range and Linearity with Hamamatsu Large Area OASLM

Phase dynamic range and Linearity

Diffraction Efficiency

Phase response is not linear

Can compensate computationally

Programmable Diffractive Optics Demonstrations

Diffractive Wavefront Control - Dynamic Beam Scanning with High Optical Efficiency

Programmable Wavefront Control Demonstration High-Fidelity <u>Aberration Compensation</u>

Programmable diffractive optic

Aberrated Wavefront 10 λ aberration

Compensated Wavefront $\lambda/8$ residual aberration

Compensated Telescope: 10-Degree Off-Axis Aberration Compensation factor-of-70 increase in FOR

programmable diffractive optic phase profile

without compensation $\sim 40\lambda$ p-p aberration

with compensation diffraction-limited performance

2. Wavelength Dependence

Mathematics of Diffractive Phase Subtraction from Amplitude Modulation Holography

mutually coherent plane wave: B

— hologram transmission function: T ~ 2 + e^{iφab} + e^{- iφab} —

Mathematics of Diffractive Phase Subtraction (cont.)

phase profile of aberrated wavefront

$$\phi_{\text{wavefront}}(x,y) = (2\pi/\lambda_{\text{wavefront}}) \text{ OPD}(x,y)$$

phase profile associated with diffractive optic

$$\phi_{\text{diffractive optic}}(x,y) = (2\pi/\lambda_{\text{reset}}) \text{ OPD}(x,y)$$

phase profile of compensated wavefront:

let
$$\Delta \lambda = \lambda_{reset} - \lambda_{wavefront}$$
 , then

$$\Delta \phi(x,y) = \phi_{\text{wavefront}}(x,y) - \phi_{\text{diffractive optic}}(x,y)$$

$$\Delta \phi(x,y) = (2\pi\Delta\lambda/\lambda_{reset}\lambda_{wavefront}) OPD(x,y)$$

Mathematics of Diffractive Phase Subtraction (cont.)

Residual chromatic phase error: $\Delta \phi(x,y) = (2\pi\Delta\lambda/\lambda_{reset} \lambda_{wavefront}) \text{ OPD}(x,y)$

<u>Diffraction-limited requirement</u>: $\Delta \phi < \pi/2$ {or quarter-wave peak-to-peak wavefront error}

<u>Diffraction-limited bandwidth</u>: $2\Delta\lambda = (\lambda_{\text{wavefront}} \lambda_{\text{reset}})/(2*\text{OPD}_{\text{max}})$

The maximum residual aberration occurs only over part of the aperture and part of the spectrum.

Maximum OPD 40λ @ 550 nm

Examples
Center wavelength, λ
550 nm
1.0 μm
10.0 μm

Diffraction Limited Bandwidth, 2Δλ
7 nm
23 nm
2,300 nm

<u>Compensated Telescope</u>: <u>Wavelength-Agile Imaging Demonstrations</u> wavelength scaling of diffractive optic

compensated images with 40- λ p-p aberration @ 10-degree field angle

What about extended spectral bandwidths?

Passive Illumination Imaging Demonstration

Accomplishment: identified spectral bandwidth limitation

near-diffraction-limited resolution

Tunable Spectral Filter Demonstration NMSU/NASA – Prof. David Voelz & Melinda Deramo

Near-diffraction-limited compensated images

Conclusions

- Significant performance capabilities have been demonstrated with a prototype programmable diffractive optics setup.
 - high optical efficiency
 - large aberration compensation with nearly diffraction-limited performance
 - wavelength tunability
 - extended spectral bandwidth operation
- Liquid-crystal technology faces some challenges
 - response time
 - absorption may limit optical power levels
 - polarization dependence can affect net efficiency
- Alternate technologies that may advance the capabilities of Programmable Diffractive Optics
 - high-resolution MEMS (micromachined electro-mechanical systems) Mirrors

The five enabling Technologies

- Advanced WFC*
- Agile narrowband filters (NMSU)
- Wide Dynamic range WFS* (UAH?)
- Ultra-lightweight optics (including optical windows)*
- High Altitude Airship HAA (MDA) or others

The five enabling Technologies

- Advanced WFC*
- Agile narrowband filters (NMSU)
- Wide Dynamic range WFS* (UAH?)
- Ultra-lightweight optics (including optical windows)*
- High Altitude Airship HAA (MDA) or others

Ultra-lightweight optics

- Membrane Development
- Membrane Mechanics
- Boundary Development
- Coatings Development

Ultra-Lightweight Polymer Membrane Mirror Technology Development

Presented by Brian Patrick

Overview

- High Technology Programs
 Driving Membrane Research
- Polymer Material for Membrane Optical Elements
- Requirements for Imaging Applications
- Current Research Progress for Flat and Curved Membranes
- Conclusions

Program Goals Driving Membrane Optics Research

Space Science Goals

- JWST Space Telescope 50m² (6 m Aperture)
- Planet Spectroscopy >1,000 m²
 (40 m Aperture)
- Planet Imaging >25,000 m²
 (200 m Aperture)

Earth Science

- IR Imaging
- Resource Mapping
- Passive Microwave Imaging
- Sensor Locations Beyond LEO

DOD

- Reconnaissance
- Directed Energy
- Radar
- Communications

Reference: Rich Capp's "Ultra Lightweight Space Optics Challenge Workshop"

Membrane Material for Optical Applications

CP1™ (Clear Polyimide)

- Developed by NASA Langley specifically for Space Applications
- Material Synthesized by SRS
 Under Exclusive License from NASA. (End to End Quality Control)
- Film Manufacturing Process Results in Very Homogenous Film Properties
- Wide Range of Operating Temperatures (Cryogenic - 250C)
- Resistant to UV Radiation
- Film Solubility Enables Advanced Casting and Surface Replication Manufacturing Techniques

Thin-Film Polymer Technology Heritage

- 15+ Years Experience in Research and Development of Polyimides and Polyimide-Based Thin-Film Structures
- Research Began in the Development of Thin-Film Reflectors Used for Solar Concentrators and RF Antennas
 - Polyimide Production Development
 - Fabrication and Characterization of Polyimide Thin Films
 - Development of Innovative Applications for Thin-Film Structures
- Figure and Surface Error Tolerances for Non-Imaging Applications Were Easily Achieved.

Background and Challenges for Membrane Optics

RMS Wavefront Error 1-5x10 ⁻³ meter	<1x10 ⁻³ meter	~150x10 ⁻⁹ meter
RMS Slope Error 0.5mm at X Band	~2x10 ⁻³ Radian	~1x10 ⁻⁶ Radian
RMS Thickness Variation NA	NA	~75x10 ⁻⁹ Meter
Conductivity (A Few Skin Depths) High	NA	NA
Optical Reflecting NA	High	High

Primary Requirements for Precision Membrane Optics

Surface Finish

 A Highly Polished Specular Surface is Required to Transmit or Reflect Incident Light With Minimal Wave Front Distortion

Uniform Thickness

- Thickness Variations will Contribute to Figure Errors
- Stressed Membranes
 Assume the Figure of the Mid Plane

Figure Control

- Boundary Control
 - Rigid Ring
 - Compliant Ring
 - Active Tuning
- Global Shape
 - Shape Memory
 - Electrostatic

Surface Roughness for SRS CP1™ Cast Membrane Films

- •1.193 nm RMS Surface
 Roughness Demonstrated on
 0.5 Meter Test Article
- Surface Roughness is
 Achievable on Precision
 Mandrel Replicated Films and Large Scale Net-Shape Films
- Test Performed at NASA/MSFC Optics Facility Using a ZYGO Surface Roughness Interferometer

Surface Topography for SRS CP1™ Sample Cast from a Non-Precision Float Glass Substrate

Membrane Thickness Variation Process Refinement

- Modifications to Casting Process Has Resulted in Drastic Improvement in Thickness Variation Present on Both Flat and Curved Substrates.
- Sub-Wavelength
 Thickness Variation
 Demonstrated on
 Apertures Up To
 0.5-Meters.

Membrane Thickness Variation Process Refinement for Curved Substrates

Thickness
Variation
Reduction on
Convex
Spherical Mirror,
0.5-Meter Diameter
with f/1.87

Thickness
Variation
Reduction on
Concave
Parabolic Mirror,
0.3-Meter Diameter
with f/4.6

Extreme Minimizationof Membrane Thickness Variation

Courtesy AFRL DE

- Double-pass Interferogram of a 10cm Sample of CP-1
- Thickness Uniformity ~1/20 Wave rms

SRS Large-Scale Casting System

- New Large-scale Membrane
 Facility Has Been Installed at
 SRS and Initial Castings Have
 Shown Similar Success in
 Thickness Variation.

 Expandable up to 3-Meter
 Diameter Castings.
- Currently Thickness Variation
 Has Been Minimized to ~2
 Waves of Error Over 1.5-Meters.

Thickness
Variation
Composite of
1.5-Meter
Diameter CP-1
Membrane
Revealing
Only ~2 Waves
of Error.

SRS Large-Scale Casting System

SRS Has Shown Precision
Membrane Production Using a
Custom Manufactured Large-scale
Casting System.

 1.5-Meter Membrane Flats Manufactured Have Been Successfully Coated.

SRS Large-Scale Casting System

- Further Process Development of 1.5-meter Membranes Has Resulted in Essential Null Fringe Thickness Variation Over Approximate 1-Meter Central Diameter.
- Currently This Has Been Achieved on Very Thin Films (~5-micron)
 - Additional Research Can Increase This Thickness.

Conclusions

- Membrane Optical Elements, With Areal Density of 0.05 kg/m² (Unsupported), Have Been Manufactured With Surface Finish and Thickness Tolerance Sufficient for Precision Optical Applications
- Practical Flat Membrane Elements Are Available Now. Additional Research Is Under way to Further Address Lightweight Support and Figure Control for Curved Optical Elements.
- Scaling Technology Exists to Create Very Large Aperture Membrane Elements.
- Candidate Applications Include Antenna,
 Solar Power, as well as Imaging

Membrane Mirror Technology

- Such Membrane
 Technology Has Led to
 Expanded Research
 for Using Them As
 First Surface Mirrors
- Optical Quality
 Membranes Can Be
 Manufactured up to
 1.5-Meters in Diameter.
 Expandable up to
 3-Meters

Ultra-lightweight optics

- Membrane Development
- Membrane Mechanics
- Boundary Development
- Coatings Development

Membrane Mechanics: MANS

Christopher H. M. Jenkins

Compliant Structures Laboratory
Mechanical Engineering Department
S. D. School of Mines and Technology, Rapid City, SD

James M. Wilkes

Air Force Research Laboratory
Directed Energy Directorate
Kirtland Air force Base, NM

Introduction

- · Membranes are inherently *under-constrained* structures that rely on prestressing, e.g., by inflation, for inplane compression or out-of-plane stiffness
- · Use of stress inherent in optical coatings provides a unique opportunity for figuring the membrane aperture

The Continuum-Based Models

- Two kinds of continuum-based models have been developed to prescribe the coating stress required to figure the membrane mirror:
 - Theoretical models developed by Dr. Wilkes, AFRL/DEBS

Nonlinear FE models developed at the Compliant Structures

Laboratory

 Within the range of applicability of the theory, both models have been shown to be in good agreement

A Length-Scales Problem

 There is a huge gap, however, between continuum-based model prescriptions of coating stress requirements and atomistic processes for applying the coating stress

Continuum-based coating stress prediction

Bridging the Length-Scales

 Other work has proceeded to provide a "calibration" between the continuum-based models and atomistic-based processes

Continuum-based coating stress prediction

Bridging the Length Scales

- Measurement of the coating stress applied may potentially be accomplished by one or more of several methods, chief among these being:
 - curvature measurement
 - bulge test
 - x-ray diffraction
- Several other techniques may also prove useful as stress measuring techniques in themselves, or as adjuncts to the stress characterization:
 - vibration testing
 - Raman spectroscopy
 - scanning-probe microscopy
 - dynamic mechanical analysis

Comparison

 A comparison of FE model-derived coating stress from bulge test and vibration test on a membrane coupon is given below:

	Bulge test	Vibration test	Average
Coating stress (GPa)	1.12	1.31	1.21

Pressure Augmentation

- There are a number of good reasons why adding a small amount of pressure to the net-shape membrane is desirable.
- For one, pressure augmentation can relax the requirement on the coating prescription and application.
- Several questions then arise, for example, given an undercompensated (under-coated) membrane, what figure is achieved under pressurization?

Pressure Augmentation

 Investigations to answer these questions are ongoing

 Axial Deflection vs. Radial Coordinate

FE results for axial displacement of under-compensated pressure-augmented MANS

Ultra-lightweight optics

- Membrane Development
- Membrane Mechanics
- Boundary Development
- Coatings Development

Boundary Development: MANS

Christopher H. M. Jenkins

Compliant Structures Laboratory
Mechanical Engineering Department
S. D. School of Mines and Technology, Rapid City, SD

James M. Wilkes

Air Force Research Laboratory
Directed Energy Directorate
Kirtland Air force Base, NM

Introduction

Every optic needs a boundary:

• The boundary must perform many functions including maintenance (passive and/or active) of optical figure under a variety of disturbances, connection to the rest of the optical train, assisting in launch survivability, etc.

Pressure Augmented Membrane Mirror

(including optical window)

Thickness variation (rms) @ 633 nm

 $\lambda/20$ @ 10 cm dia

 $\lambda/8$ @ 28 cm dia

 $\lambda/20$ @ 90+ cm dia

Surface roughness < 1 nm rms

 $\lambda/5$ at 15 cm dia

Notional Boundary : A first look

A preliminary boundary for the MANS membrane mirror was designed based on the following requirements:

For a 1 m diameter (say f/2) MANS:

- . Out of plane deflection $\leq 100~\mu m$ under a slew acceleration of $0.01-0.1~rad/s^2$ about a ring diameter
- Areal density $\leq 1 \text{ kg/m}^2$
- · (Keep lowest natural frequency > 100 Hz)

Approach

For a simple thin-walled rectangular ring cross-section:

- · Use ABAQUS non-linear finite element code
- Baseline aluminum and trade maximum slew deflection vs. areal density
- Baseline aluminum and trade lowest natural frequency vs. areal density α

Results

(Wall thickness = 3 mm)		$\alpha = 0.01 \text{ rad/s}^2$		$\alpha = 0.1 \text{ rad/s}^2$	
Cross-section (mm)	Areal Density (kg/m²)	w _{max} (μm)	f ₀ (Hz)	w _{max} (μm)	f ₀ (Hz)
13 X 25	2.0736	2.38	20.93	23.86	20.93
10 X 25	1.8792	4.55	15.158	45.50	15.158
7 X 25	1.6848	12.90	8.9991	129.0	8.9991
13 X 13	1.296	2.95	18.828	29.59	18.828
7 X 13	0.9072	14.46	8.4883	144.7	8.4883

Bold font indicates design that meets areal density requirement

Further Light-Weighting

(Wall thickness = 3 mm)		$\alpha = 0.01 \text{ rad/s}^2$		$\alpha = 0.1 \text{ rad/s}^2$	
Cross-section (mm)	Areal Density (kg/m ²)	$w_{max} (\mu m)$	$f_0(Hz)$	$w_{max} (\mu m)$	$f_0(Hz)$
13 X 25	1.152			3.37	55.68
10 X 25	1.044			6.42	40.325
7 X 25	0.936			18.21	23.94
13 X 13	0.72			4.17	50.088
7 X 13	0.504			20.50	22.582

Baseline Design

- · Baseline aluminum design of 13 mm X 13 mm (0.5 in X 0.5 in) nearly meets slew displacement and areal density requirements
- · Lowest frequency > 100 Hz requirement may be met by placing ring in compression using spokes (see next slide)
- Graphite/epoxy improves compliance with requirements further
- · Preliminary mirror is under construction and includes:
 - · Electrostatic boundary control
 - · Planarity adjustment
 - · Under compensated pressure-augmented net-shape membrane

Re-inventing the Wheel

Ultra-lightweight optics

- Membrane Development
- Membrane Mechanics
- Boundary Development
- Coatings Development

Vacuum Coatings For Large Aperture Membrane Mirrors

David A. Sheikh Surface Optics Corporation

Special thanks to John Busbee for ML's earlier work in stress coatings

Surface Optics Corporation's Coating Capabilities

- Large, 3.3-meter vacuum chamber
- 6 pocket ebeam evaporation with Mark II Ion Gun
- Novel motion controlled evaporation system with rate feed-back for uniform films
- (3) smaller vacuum chambers for development and small-scale production

Optical Measurements

- Reflectivity 0.3 2.0 microns (polarized, at angle)
- Hemispherical Reflectance 2 100
- BRDF Scatter measurements as a function of wavelength and angle
- Portable FTIR's
- Real-time Hyperspectral Imaging

Coatings Needed For Membrane Optics

- Reflective
 - Protected Aluminum
 - Dielectric Mirrors
- Wide-Band Anti-Reflection Coatings
- Stress Coatings
- Tailored CTE Coatings
- UV Protective Coatings
- Thermal Control
 - Tailored α/ε

CHA Evaporation System

3.3-meter Vacuum Chamber

Motion Controlled Evaporation System

Coating Uniformity

- Uniform Films Over Large Areas
 - +/- 3% flat substrates, +/- 4% typical curved optics
 - Programmable thickness (no trial and error)
 - Development underway to improve thickness to +/- 1%

1.5-meter, CP-1 Membrane Mirrors

45-Layer Dielectric Solar Reflector On Kapton™ Film (26 "x 60")

Coating Applications

Space Flight Reflectors

The five enabling Technologies

- Ultra-lightweight optics (including optical windows)*
- Advanced WFC*
- Wide Dynamic range WFS* (UAH?)
- Agile narrowband filters (NMSU)
- HAA (MDA)

Planned Upper-Atmosphere and Space Experiments

Membrane Mirror Experiment Upper Atmosphere

Turbulent Air

EXPERIMENTAL PLATFORMS

High-altitude balloonV-AirshipLighter-than-air drivenLighter-than-air/engine drivenHitchhiker payloadPrimary payload~100,000 ft; ~5 hrs~120,000 ft; ~5 days; 200 nmWinter 04Summer 04

Payload description-

- One optical membrane mirror
- Acoustic sensor will measure turbulence of atmospheric particles
- Capacitive sensors will measure time-dependent position data on the order of 100 nanometers
- Onboard power, sensing, data-recording capability
- Weight: 15kg; Dimensions: 30x30x45 cm; Power: ~50 W

Capacitive Sensors

Vibrating Membrane

Acoustic Sensor

Experimental Objective: To characterize the turbulent acoustic disturbances of the upper atmosphere and how those disturbances affect ultra-lightweight membrane optics

Membrane Mirror Experiment Low Earth Orbit

Details:

Shuttle/ISS platform preferred Use of articulating arm critical Hardware retrieval mandatory Experiment will verify components for future space missions

AFRL SERB Ranking:

Military Relevance:
Services/agencies need
large optics. Flexible
compliant nature allows
this

Experimental Payload

- Planar membrane mirror with composite boundary
- Capacitive sensors will measure timedependent position data on the order of 100 nm
- Payload orientation rotated between ram and wake
- Onboard power, sensing and recording equip

Experimental Objective: To characterize the drag effects of the residual atmosphere at LEO and determine how these disturbances affect ultra-lightweight optics.

Concluding charts

- The five enabling Technologies
 - Varied levels of readiness
 - Technology is ripe for development
- Adaptive films not yet part of the development
- TRL 5/6 by 2009 for most of the technologies

Technology Readiness

midilibiani optioo	•	Membrane	optics
--------------------	---	----------	--------

	- Windows	TRL 5
	Primary mirror	TRL 3
	Boundaries	TRL 1
•	Advanced WFC	
	 Spatial light modulators 	TRL 4
	- MEMS	TRL 3
•	Wide dynamic range WFS	
	 Moire deflectometer 	TRL 4
	Novel WFS	TRL 1
•	Agile spectral filters	TRL 3
•	Process and control (TBD)	TRL 1

Approximate Schedule (Notional schedule used only to depict the maturity of the technology)

